Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.088
Filtrar
1.
ACS Infect Dis ; 10(4): 1232-1249, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511828

RESUMO

Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5α-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 ± 0.9) × 105 M-1 s-1. Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k3 = (2.4 ± 0.3) × 10-7 s-1), resulting in a residence time of 48 ± 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5α-methyl group in NA-1-157 sterically restricts rotation of the 6α-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.


Assuntos
Carbapenêmicos , beta-Lactamases , Carbapenêmicos/farmacologia , Carbapenêmicos/química , Meropeném/farmacologia , beta-Lactamases/química , Proteínas de Bactérias/química
2.
Protein Sci ; 33(4): e4972, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533527

RESUMO

Evolution leads to conservation of amino acid residues in protein families. Conserved proline residues are usually considered to ensure the correct folding and to stabilize the three-dimensional structure. Surprisingly, proline residues that are highly conserved in class A ß-lactamases were found to tolerate various substitutions without large losses in enzyme activity. We investigated the roles of three conserved prolines at positions 107, 226, and 258 in the ß-lactamase BlaC from Mycobacterium tuberculosis and found that mutations can lead to dimerization of the enzyme and an overall less stable protein that is prone to aggregate over time. For the variant Pro107Thr, the crystal structure shows dimer formation resembling domain swapping. It is concluded that the proline substitutions loosen the structure, enhancing multimerization. Even though the enzyme does not lose its properties without the conserved proline residues, the prolines ensure the long-term structural integrity of the enzyme.


Assuntos
Mycobacterium tuberculosis , Prolina , Prolina/química , beta-Lactamases/química , Dimerização
3.
Proc Natl Acad Sci U S A ; 121(12): e2313513121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483989

RESUMO

Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M ß-lactamase as a model system. CTX-M hydrolyzes ß-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the ß-lactamase enzyme and quantitated the function of variants against two ß-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.


Assuntos
Escherichia coli , beta-Lactamases , Escherichia coli/genética , Domínio Catalítico/genética , Mutação , Substituição de Aminoácidos , beta-Lactamases/química
4.
Int J Biol Macromol ; 262(Pt 1): 130041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336327

RESUMO

Metallo-ß-lactamases (MßLs) stand as significant resistant mechanism against ß-lactam antibiotics in Gram-negative bacteria. The worldwide dissemination of New Delhi metallo-ß-lactamases (NDMs) intensifies antimicrobial resistance, posing severe threats to human health due to the absence of inhibitors available in clinical therapy. L3, a flexible ß-hairpin loop flanking the active site in MßLs, has been proven to wield influence over the reaction process by assuming a crucial role in substrate recognition and intermediate stabilization. In principle, it potentially retards product release from the enzyme, consequently reducing the overall turnover rate although the details regarding this aspect remain inadequately elucidated. In this study, we crystallized NDM-1 in complex with three penicillin substrates, conducted molecular dynamics simulations, and measured the steady-state kinetic parameters. These analyses consistently unveiled substantial disparities in their interactions with loop L3. We further synthesized a penicillin V derivative with increased hydrophobicity in the R1 side chain and co-crystallized it with NDM-1. Remarkably, this compound exhibited much stronger dynamic interplay with L3 during molecular dynamics simulation, showed much lower Km and kcat values, and demonstrated moderate inhibitory capacity to NDM-1 catalyzed meropenem hydrolysis. The data presented here may provide a strategic approach for designing mechanism-based MßL inhibitors focusing on structural elements external to the enzyme's active center.


Assuntos
Penicilinas , beta-Lactamas , Humanos , Penicilinas/farmacologia , Domínio Catalítico , Hidrólise , beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química
5.
ACS Biomater Sci Eng ; 10(3): 1461-1472, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38315631

RESUMO

The presence of ß-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how ß-lactamase positive microorganisms can neutralize the effect of ß-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of ß-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that ß-lactamase positive bacteria can neutralize the cytotoxic effect of ß-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using ß-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of ß-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.


Assuntos
Antibacterianos , Ecossistema , Antibacterianos/química , beta-Lactamases/química , beta-Lactamas/farmacologia , beta-Lactamas/química , Monobactamas , Bactérias , 60693
6.
J Med Chem ; 67(5): 3795-3812, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373290

RESUMO

Antimicrobial resistance is a global public health threat. Metallo-ß-lactamases (MBLs) inactivate ß-lactam antibiotics, including carbapenems, are disseminating among Gram-negative bacteria, and lack clinically useful inhibitors. The evolving bisthiazolidine (BTZ) scaffold inhibits all three MBL subclasses (B1-B3). We report design, synthesis, and evaluation of BTZ analogues. Structure-activity relationships identified the BTZ thiol as essential, while carboxylate is replaceable, with its removal enhancing potency by facilitating hydrophobic interactions within the MBL active site. While the introduction of a flexible aromatic ring is neutral or detrimental for inhibition, a rigid (fused) ring generated nM benzobisheterocycle (BBH) inhibitors that potentiated carbapenems against MBL-producing strains. Crystallography of BBH:MBL complexes identified hydrophobic interactions as the basis of potency toward B1 MBLs. These data underscore BTZs as versatile, potent broad-spectrum MBL inhibitors (with activity extending to enzymes refractory to other inhibitors) and provide a rational approach to further improve the tricyclic BBH scaffold.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/química , Carbapenêmicos , Bactérias Gram-Negativas
7.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 1): 13-21, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38168018

RESUMO

Nocardia are Gram-positive bacteria from the Actinobacteria phylum. Some Nocardia species can infect humans and are usually considered to be opportunist pathogens, as they often infect immunocompromised patients. Although their clinical incidence is low, many Nocardia species are now considered to be emerging pathogens. Primary sites of infection by Nocardia are the skin or the lungs, but dissemination to other body parts is very frequent. These disseminated infections are very difficult to treat and thus are tackled with multiple classes of antibiotics, in addition to the traditional treatment targeting the folate pathway. ß-Lactams are often included in the regimen, but many Nocardia species present moderate or strong resistance to some members of this drug class. Genomic, microbiological and biochemical studies have reported the presence of class A ß-lactamases (ABLs) in a handful of Nocardia species, but no structural investigation of Nocardia ß-lactamases has yet been performed. In this study, the expression, purification and preliminary biochemical characterization of an ABL from an N. cyriacigeorgica (NCY-1) clinical strain are reported. The crystallization and the very high resolution crystal structure of NCY-1 are also described. The sequence and structural analysis of the protein demonstrate that NCY-1 belongs to the class A1 ß-lactamases and show its very high conservation with ABLs from other human-pathogenic Nocardia. In addition, the presence of one molecule of citrate tightly bound in the catalytic site of the enzyme is described. This structure may provide a solid basis for future drug development to specifically target Nocardia spp. ß-lactamases.


Assuntos
Nocardia , beta-Lactamases , Humanos , beta-Lactamases/química , Cristalografia por Raios X , Nocardia/genética , Antibacterianos
8.
Protein Sci ; 33(1): e4816, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897253

RESUMO

To investigate how disulfide bonds can impact protein energy landscapes, we surveyed the effects of adding or removing a disulfide in two ß-lactamase enzymes, TEM-1 and CTX-M-9. The homologs share a structure and 38% sequence identity, but only TEM-1 contains a native disulfide bond. They also differ in thermodynamic stability and in the number of states populated at equilibrium: CTX-M-9 is two-state whereas TEM-1 has an additional intermediate state. We hypothesized that the disulfide bond is the major underlying determinant for these observed differences in their energy landscapes. To test this, we removed the disulfide bridge from TEM-1 and introduced a disulfide bridge at the same location in CTX-M-9. This modest change to sequence modulates the stabilities-and therefore populations-of TEM-1's equilibrium states and, more surprisingly, creates a novel third state in CTX-M-9. Unlike TEM-1's partially folded intermediate, this third state is a higher-order oligomer with reduced cysteines that retains the native fold and is fully active. Sub-denaturing concentrations of urea shifts the equilibrium to the monomeric form, allowing the disulfide bond to form. Interestingly, comparing the stability of the oxidized monomer with a variant lacking cysteines reveals the disulfide is neither stabilizing nor destabilizing in CTX-M-9, in contrast with the observed stabilization in TEM-1. Thus, we can conclude that engineering disulfide bonds is not always an effective stabilization strategy even when analogous disulfides exist in more stable structural homologs. This study also illustrates how homo-oligomerization can result from a small number of mutations, suggesting complex formation might be easily accessed during a protein family's evolution.


Assuntos
Proteínas de Escherichia coli , Dobramento de Proteína , beta-Lactamases/química , Cisteína , Dissulfetos/química
9.
Antimicrob Agents Chemother ; 68(2): e0099123, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38047644

RESUMO

Taniborbactam (TAN) is a novel broad-spectrum ß-lactamase inhibitor with significant activity against subclass B1 metallo-ß-lactamases (MBLs). Here, we showed that TAN exhibited an overall excellent activity against B1 MBLs including most NDM- and VIM-like as well as SPM-1, GIM-1, and DIM-1 enzymes, but not against SIM-1. Noteworthy, VIM-1-like enzymes (particularly VIM-83) were less inhibited by TAN than VIM-2-like. Like NDM-9, NDM-30 (also differing from NDM-1 by a single amino acid substitution) was resistant to TAN.


Assuntos
Ácidos Borínicos , beta-Lactamases , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Ácidos Borínicos/farmacologia , Ácidos Carboxílicos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
10.
J Biol Chem ; 300(1): 105493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000656

RESUMO

Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all ß-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.


Assuntos
Ceftazidima , Farmacorresistência Bacteriana , Modelos Moleculares , Humanos , Aminoácidos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Farmacorresistência Bacteriana/genética , Cristalografia por Raios X , Domínio Catalítico/genética , Estrutura Terciária de Proteína
11.
Int J Biol Macromol ; 256(Pt 2): 128230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013072

RESUMO

Metallo-ß-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.


Assuntos
Infecções Bacterianas , beta-Lactamases , Humanos , beta-Lactamases/química , Antibacterianos/farmacologia , Bibliometria , Desenho de Fármacos
12.
Eur J Med Chem ; 265: 116055, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134748

RESUMO

The bacterial infection mediated by ß-lactamases MßLs and SßLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MßLs and SßLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MßLs (NDM-1, IMP-1) and SßLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 µM (except 1a and 1d on SßLs, IC50 > 50 µM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 µM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 µM, is a time- and dose-dependent inhibitor of both MßLs and SßLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MßLs and E. coli-SßLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MßLs and MßLs, in combating antibiotic-resistant bacteria.


Assuntos
Serina , beta-Lactamases , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Escherichia coli , Testes de Sensibilidade Microbiana , Serina/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia
13.
Bioorg Med Chem ; 97: 117559, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109811

RESUMO

Bacterial resistance is undoubtedly one of the main public health concerns especially with the emergence of metallo-ß-lactamases (MBLs) able to hydrolytically inactivate ß-lactam antibiotics. Currently, there are no inhibitors of MBLs in clinical use to rescue antibiotic action and the New Delhi metallo-ß-lactamase-1 (NDM-1) is still considered as one of the most relevant targets for inhibitor development. Following a fragment-based strategy to find new NDM-1 inhibitors, we identified aurone as a promising scaffold. A series of 60 derivatives were then evaluated and two of them were identified as promising inhibitors with Ki values as low as 1.7 and 2.5 µM. Moreover, these two most active compounds were able to potentiate meropenem in in vitro antimicrobial susceptibility assays. The molecular modelling provided insights about their likely interactions with the active site of NDM-1, thus enabling further improvement in the structure of this new inhibitor family.


Assuntos
Benzofuranos , Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Testes de Sensibilidade Microbiana
14.
Curr Microbiol ; 81(1): 26, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041782

RESUMO

Mycobacteria are intrinsically resistant to beta-lactams as they possess several putative penicillin-interactive enzymes (PIEs), some of those are with dual-activity, namely DD-carboxypeptidase and beta-lactamase. Here, with help of molecular approaches, we elucidated the nature of one such putative PIE, MSMEG_1586, in Mycobacterium smegmatis. The in vivo expression of the membrane-bound form of MSMEG_1586 enhanced the beta-lactam resistance of a beta-lactamase deleted host E. coli strain (AM1OC), particularly for aztreonam (eight-fold) and cephalosporins (8-16 fold). To understand the reason for such elevation of resistance, soluble-form of MSMEG_1586 (sMSMEG_1586) was created by removing signal peptides and partially eliminating the amphipathic helix, and finally, expressed and purified. The purified sMSMEG_1586 was active and manifested a strong penicillin-binding affinity as shown by its ability to bind to fluorescent penicillin (Bocillin-FL). Interestingly, the steady-state kinetics apparently confirmed the hydrolytic ability of sMSMEG_1586 towards cefotaxime and aztreonam where hydrolysing aztreonam is a unique and rare behaviour among the beta-lactamases. However, sMSMEG_1586 was devoid of exerting DD-carboxypeptidase like activity. Finally, in silico analysis of MSMEG_1586 revealed a special folding that resembles class C beta-lactamase, except for the absence of a characteristic R2 loop. Overall, MSMEG_1586 could be categorized as a cephalosporinase with the ability to hydrolyse aztreonam.


Assuntos
Aztreonam , Cefalosporinas , Cefalosporinas/metabolismo , Aztreonam/farmacologia , Escherichia coli/metabolismo , beta-Lactamases/genética , beta-Lactamases/química , Penicilinas , Carboxipeptidases , Antibacterianos
15.
Molecules ; 28(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959781

RESUMO

Over 30 compounds, including para-, meta-, and ortho-phenylenediboronic acids, ortho-substituted phenylboronic acids, benzenetriboronic acids, di- and triboronated thiophenes, and pyridine derivatives were investigated as potential ß-lactamase inhibitors. The highest activity against KPC-type carbapenemases was found for ortho-phenylenediboronic acid 3a, which at the concentration of 8/4 mg/L reduced carbapenems' MICs up to 16/8-fold, respectively. Checkerboard assays revealed strong synergy between carbapenems and 3a with the fractional inhibitory concentrations indices of 0.1-0.32. The nitrocefin hydrolysis test and the whole cell assay with E. coli DH5α transformant carrying blaKPC-3 proved KPC enzyme being its molecular target. para-Phenylenediboronic acids efficiently potentiated carbapenems against KPC-producers and ceftazidime against AmpC-producers, whereas meta-phenylenediboronic acids enhanced only ceftazidime activity against the latter ones. Finally, the statistical analysis confirmed that ortho-phenylenediboronic acids act synergistically with carbapenems significantly stronger than other groups. Since the obtained phenylenediboronic compounds are not toxic to MRC-5 human fibroblasts at the tested concentrations, they can be considered promising scaffolds for the future development of novel KPC/AmpC inhibitors. The complexation of KPC-2 with the most representative isomeric phenylenediboronic acids 1a, 2a, and 3a was modeled by quantum mechanics/molecular mechanics calculations. Compound 3a reached the most effective configuration enabling covalent binding to the catalytic Ser70 residue.


Assuntos
Antibacterianos , Ceftazidima , Humanos , Antibacterianos/química , Ceftazidima/farmacologia , Escherichia coli , beta-Lactamases/química , Proteínas de Bactérias/metabolismo , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos
16.
J Agric Food Chem ; 71(48): 19111-19120, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38011504

RESUMO

In this study, AmpC ß-lactamase of Escherichia coli was expressed, and its intermolecular interaction mechanisms with 15 cephalosporins (CPs) were studied by using a molecular docking technique. Results showed that this enzyme mainly interacted with the ß-lactam ring of these CPs, and the key contacting amino acids were Ser80 and Ser228. The AmpC ß-lactamase was combined with 5 horseradish peroxidase-labeled conjugates to develop a direct competitive array on a microplate for determination of 15 drugs in milk. Due to the use of principal component analysis method to analyze the data, this method could discriminate the 15 drugs at the concentration as low as 10 ng/mL. The detection results for the unknown milk samples were consistent with those obtained by the liquid chromatography-mass spectrometry method. As a general comparison, this method is better than the previous antibody-based and receptor-based detection methods for CPs. This is the first paper reporting a competitive array for discriminative determination of a class of small-molecule substances.


Assuntos
Cefalosporinas , Leite , Animais , Cefalosporinas/química , Cefalosporinas/metabolismo , Leite/metabolismo , Simulação de Acoplamento Molecular , beta-Lactamases/química , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/metabolismo
17.
Protein Sci ; 32(12): e4809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853808

RESUMO

ß-Lactamases grant resistance to bacteria against ß-lactam antibiotics. The active center of TEM-1 ß-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 ß-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 ß-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 ß-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 µM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.


Assuntos
Cádmio , Mercúrio , Cádmio/farmacologia , Escherichia coli/metabolismo , Hidrólise , Cinética , beta-Lactamases/química , Ampicilina/farmacologia , Mercúrio/farmacologia , Catálise , Íons
18.
J Chem Inf Model ; 63(21): 6681-6695, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37847018

RESUMO

Antibiotic resistance by bacterial pathogens against widely used ß-lactam drugs is a major concern to public health worldwide, resulting in high healthcare cost. The present study aimed to extend previous research by investigating the potential activity of reported compounds against the S. typhi ß-lactamase protein. 74 compounds from computational screening reported in our previous study against ß-lactamase CMY-10 were subjected to docking studies against blaCTX-M15. Site-Identification by Ligand Competitive Saturation (SILCS)-Monte Carlo (SILCS-MC) was applied to the top two ligands selected from molecular docking studies to predict and refine their conformations for binding conformations against blaCTX-M15. The SILCS-MC method predicted affinities of -8.6 and -10.7 kcal/mol for Top1 and Top2, respectively, indicating low micromolar binding to the blaCTX-M15 active site. MD simulations initiated from SILCS-MC docked orientations were carried out to better characterize the dynamics and stability of the complexes. Important interactions anchoring the ligand within the active site include pi-pi stacked, amide-pi, and pi-alkyl interactions. Simulations of the Top2-blaCTX-M15 complex exhibited stability associated with a wide range of hydrogen-bond and aromatic interactions between the protein and the ligand. Experimental ß-lactamase (BL) activity assays showed that Top1 has 0.1 u/mg BL activity, and Top2 has a BL activity of 0.038 u/mg with a minimum inhibitory concentration of 1 mg/mL. The inhibitors proposed in this study are non-ß-lactam-based ß-lactamase inhibitors that exhibit the potential to be used in combination with ß-lactam antibiotics against multidrug-resistant clinical isolates. Thus, Top1 and Top2 represent lead compounds that increase the efficacy of ß-lactam antibiotics with a low dose concentration.


Assuntos
beta-Lactamases , beta-Lactamas , beta-Lactamases/química , beta-Lactamas/farmacologia , Salmonella typhi/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Proteínas , Testes de Sensibilidade Microbiana , Domínio Catalítico , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química
19.
Antimicrob Agents Chemother ; 67(10): e0035023, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37750722

RESUMO

Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a clinical threat as this ß-lactamase confers resistance to carbapenems. Recent variants of KPC-2 in clinical isolates contribute to concerning resistance phenotypes. Klebsiella pneumoniae expressing KPC-2 D179Y acquired resistance to the ceftazidime/avibactam combination affecting both the ß-lactam and the ß-lactamase inhibitor yet has lowered minimum inhibitory concentrations for all other ß-lactams tested. Furthermore, Klebsiella pneumoniae expressing the KPC-2 D179N variant also manifested resistance to ceftazidime/avibactam yet retained its ability to confer resistance to carbapenems although significantly reduced. This structural study focuses on the inhibition of KPC-2 D179N by avibactam and relebactam and expands our previous analysis that examined ceftazidime resistance conferred by D179N and D179Y variants. Crystal structures of KPC-2 D179N soaked with avibactam and co-crystallized with relebactam were determined. The complex with avibactam reveals avibactam making several hydrogen bonds, including with the deacylation water held in place by Ω loop. These results could explain why the KPC-2 D179Y variant, which has a disordered Ω loop, has a decreased affinity for avibactam. The relebactam KPC-2 D179N complex revealed a new orientation of the diazabicyclooctane (DBO) intermediate with the scaffold piperidine ring rotated ~150° from the standard DBO orientation. The density shows relebactam to be desulfated and present as an imine-hydrolysis intermediate not previously observed. The tetrahedral imine moiety of relebactam interacts with the deacylation water. The rotated relebactam orientation and deacylation water interaction could potentially contribute to KPC-mediated DBO fragmentation. These results elucidate important differences that could aid in the design of novel ß-lactamase inhibitors.


Assuntos
Antibacterianos , Ceftazidima , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Água , beta-Lactamases/genética , beta-Lactamases/química , Proteínas de Bactérias/genética , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , Inibidores de beta-Lactamases/farmacologia , Carbapenêmicos , Combinação de Medicamentos , Iminas , Testes de Sensibilidade Microbiana
20.
J Integr Bioinform ; 20(2)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498676

RESUMO

NDM-1 (New-Delhi-Metallo-ß-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.


Assuntos
Antibacterianos , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/química , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...